mirror of
https://github.com/prowler-cloud/prowler.git
synced 2026-01-25 02:08:11 +00:00
448 lines
14 KiB
Plaintext
448 lines
14 KiB
Plaintext
---
|
|
title: 'Extending the MCP Server'
|
|
---
|
|
|
|
This guide explains how to extend the Prowler MCP Server with new tools and features.
|
|
|
|
<Info>
|
|
**New to Prowler MCP Server?** Start with the user documentation:
|
|
- [Overview](/getting-started/products/prowler-mcp) - Key capabilities, use cases, and deployment options
|
|
- [Installation](/getting-started/installation/prowler-mcp) - Install locally or use the managed server
|
|
- [Configuration](/getting-started/basic-usage/prowler-mcp) - Configure Claude Desktop, Cursor, and other MCP hosts
|
|
- [Tools Reference](/getting-started/basic-usage/prowler-mcp-tools) - Complete list of all available tools
|
|
</Info>
|
|
|
|
## Introduction
|
|
|
|
The Prowler MCP Server brings the entire Prowler ecosystem to AI assistants through the [Model Context Protocol (MCP)](https://modelcontextprotocol.io). It enables seamless integration with AI tools like Claude Desktop, Cursor, and other MCP clients.
|
|
|
|
The server follows a modular architecture with three independent sub-servers:
|
|
|
|
| Sub-Server | Auth Required | Description |
|
|
|------------|---------------|-------------|
|
|
| Prowler App | Yes | Full access to Prowler Cloud and Self-Managed features |
|
|
| Prowler Hub | No | Security checks catalog with **over 1000 checks**, fixers, and **70+ compliance frameworks** |
|
|
| Prowler Documentation | No | Full-text search and retrieval of official documentation |
|
|
|
|
<Note>
|
|
For a complete list of tools and their descriptions, see the [Tools Reference](/getting-started/basic-usage/prowler-mcp-tools).
|
|
</Note>
|
|
|
|
## Architecture Overview
|
|
|
|
The MCP Server architecture is illustrated in the [Overview documentation](/getting-started/products/prowler-mcp#mcp-server-architecture). AI assistants connect through the MCP protocol to access Prowler's three main components.
|
|
|
|
### Server Structure
|
|
|
|
The main server orchestrates three sub-servers with prefixed namespacing:
|
|
|
|
```
|
|
mcp_server/prowler_mcp_server/
|
|
├── server.py # Main orchestrator
|
|
├── main.py # CLI entry point
|
|
├── prowler_hub/
|
|
├── prowler_app/
|
|
│ ├── tools/ # Tool implementations
|
|
│ ├── models/ # Pydantic models
|
|
│ └── utils/ # API client, auth, loader
|
|
└── prowler_documentation/
|
|
```
|
|
|
|
### Tool Registration Patterns
|
|
|
|
The MCP Server uses two patterns for tool registration:
|
|
|
|
1. **Direct Decorators** (Prowler Hub/Docs): Tools are registered using `@mcp.tool()` decorators
|
|
2. **Auto-Discovery** (Prowler App): All public methods of `BaseTool` subclasses are auto-registered
|
|
|
|
## Adding Tools to Prowler App
|
|
|
|
### Step 1: Create the Tool Class
|
|
|
|
Create a new file or add to an existing file in `prowler_app/tools/`:
|
|
|
|
```python
|
|
# prowler_app/tools/new_feature.py
|
|
from typing import Any
|
|
|
|
from pydantic import Field
|
|
|
|
from prowler_mcp_server.prowler_app.models.new_feature import (
|
|
FeatureListResponse,
|
|
DetailedFeature,
|
|
)
|
|
from prowler_mcp_server.prowler_app.tools.base import BaseTool
|
|
|
|
|
|
class NewFeatureTools(BaseTool):
|
|
"""Tools for managing new features."""
|
|
|
|
async def list_features(
|
|
self,
|
|
status: str | None = Field(
|
|
default=None,
|
|
description="Filter by status (active, inactive, pending)"
|
|
),
|
|
page_size: int = Field(
|
|
default=50,
|
|
description="Number of results per page (1-100)"
|
|
),
|
|
) -> dict[str, Any]:
|
|
"""List all features with optional filtering.
|
|
|
|
Returns a lightweight list of features optimized for LLM consumption.
|
|
Use get_feature for complete information about a specific feature.
|
|
"""
|
|
# Validate parameters
|
|
self.api_client.validate_page_size(page_size)
|
|
|
|
# Build query parameters
|
|
params: dict[str, Any] = {"page[size]": page_size}
|
|
if status:
|
|
params["filter[status]"] = status
|
|
|
|
# Make API request
|
|
clean_params = self.api_client.build_filter_params(params)
|
|
response = await self.api_client.get("/api/v1/features", params=clean_params)
|
|
|
|
# Transform to LLM-friendly format
|
|
return FeatureListResponse.from_api_response(response).model_dump()
|
|
|
|
async def get_feature(
|
|
self,
|
|
feature_id: str = Field(description="The UUID of the feature"),
|
|
) -> dict[str, Any]:
|
|
"""Get detailed information about a specific feature.
|
|
|
|
Returns complete feature details including configuration and metadata.
|
|
"""
|
|
try:
|
|
response = await self.api_client.get(f"/api/v1/features/{feature_id}")
|
|
return DetailedFeature.from_api_response(response["data"]).model_dump()
|
|
except Exception as e:
|
|
self.logger.error(f"Failed to get feature {feature_id}: {e}")
|
|
return {"error": str(e), "status": "failed"}
|
|
```
|
|
|
|
### Step 2: Create the Models
|
|
|
|
Create corresponding models in `prowler_app/models/`:
|
|
|
|
```python
|
|
# prowler_app/models/new_feature.py
|
|
from typing import Any
|
|
|
|
from pydantic import Field
|
|
|
|
from prowler_mcp_server.prowler_app.models.base import MinimalSerializerMixin
|
|
|
|
|
|
class SimplifiedFeature(MinimalSerializerMixin):
|
|
"""Lightweight feature for list operations."""
|
|
|
|
id: str = Field(description="Unique feature identifier")
|
|
name: str = Field(description="Feature name")
|
|
status: str = Field(description="Current status")
|
|
|
|
@classmethod
|
|
def from_api_response(cls, data: dict[str, Any]) -> "SimplifiedFeature":
|
|
"""Transform API response to simplified format."""
|
|
attributes = data.get("attributes", {})
|
|
return cls(
|
|
id=data["id"],
|
|
name=attributes["name"],
|
|
status=attributes["status"],
|
|
)
|
|
|
|
|
|
class DetailedFeature(SimplifiedFeature):
|
|
"""Extended feature with complete details."""
|
|
|
|
description: str | None = Field(default=None, description="Feature description")
|
|
configuration: dict[str, Any] | None = Field(default=None, description="Configuration")
|
|
created_at: str = Field(description="Creation timestamp")
|
|
updated_at: str = Field(description="Last update timestamp")
|
|
|
|
@classmethod
|
|
def from_api_response(cls, data: dict[str, Any]) -> "DetailedFeature":
|
|
"""Transform API response to detailed format."""
|
|
attributes = data.get("attributes", {})
|
|
return cls(
|
|
id=data["id"],
|
|
name=attributes["name"],
|
|
status=attributes["status"],
|
|
description=attributes.get("description"),
|
|
configuration=attributes.get("configuration"),
|
|
created_at=attributes["created_at"],
|
|
updated_at=attributes["updated_at"],
|
|
)
|
|
|
|
|
|
class FeatureListResponse(MinimalSerializerMixin):
|
|
"""Response wrapper for feature list operations."""
|
|
|
|
count: int = Field(description="Total number of features")
|
|
features: list[SimplifiedFeature] = Field(description="List of features")
|
|
|
|
@classmethod
|
|
def from_api_response(cls, response: dict[str, Any]) -> "FeatureListResponse":
|
|
"""Transform API response to list format."""
|
|
data = response.get("data", [])
|
|
features = [SimplifiedFeature.from_api_response(item) for item in data]
|
|
return cls(count=len(features), features=features)
|
|
```
|
|
|
|
### Step 3: Verify Auto-Discovery
|
|
|
|
No manual registration is needed. The `tool_loader.py` automatically discovers and registers all `BaseTool` subclasses. Verify your tool is loaded by checking the server logs:
|
|
|
|
```
|
|
INFO - Auto-registered 2 tools from NewFeatureTools
|
|
INFO - Loaded and registered: NewFeatureTools
|
|
```
|
|
|
|
## Adding Tools to Prowler Hub/Docs
|
|
|
|
For Prowler Hub or Documentation tools, use the `@mcp.tool()` decorator directly:
|
|
|
|
```python
|
|
# prowler_hub/server.py
|
|
from fastmcp import FastMCP
|
|
|
|
hub_mcp_server = FastMCP("prowler-hub")
|
|
|
|
@hub_mcp_server.tool()
|
|
async def get_new_artifact(
|
|
artifact_id: str,
|
|
) -> dict:
|
|
"""Fetch a specific artifact from Prowler Hub.
|
|
|
|
Args:
|
|
artifact_id: The unique identifier of the artifact
|
|
|
|
Returns:
|
|
Dictionary containing artifact details
|
|
"""
|
|
response = prowler_hub_client.get(f"/artifact/{artifact_id}")
|
|
response.raise_for_status()
|
|
return response.json()
|
|
```
|
|
|
|
## Model Design Patterns
|
|
|
|
### MinimalSerializerMixin
|
|
|
|
All models should use `MinimalSerializerMixin` to optimize responses for LLM consumption:
|
|
|
|
```python
|
|
from prowler_mcp_server.prowler_app.models.base import MinimalSerializerMixin
|
|
|
|
class MyModel(MinimalSerializerMixin):
|
|
"""Model that excludes empty values from serialization."""
|
|
required_field: str
|
|
optional_field: str | None = None # Excluded if None
|
|
empty_list: list = [] # Excluded if empty
|
|
```
|
|
|
|
This mixin automatically excludes:
|
|
- `None` values
|
|
- Empty strings
|
|
- Empty lists
|
|
- Empty dictionaries
|
|
|
|
### Two-Tier Model Pattern
|
|
|
|
Use two-tier models for efficient responses:
|
|
|
|
- **Simplified**: Lightweight models for list operations
|
|
- **Detailed**: Extended models for single-item retrieval
|
|
|
|
```python
|
|
class SimplifiedItem(MinimalSerializerMixin):
|
|
"""Use for list operations - minimal fields."""
|
|
id: str
|
|
name: str
|
|
status: str
|
|
|
|
class DetailedItem(SimplifiedItem):
|
|
"""Use for get operations - extends simplified with details."""
|
|
description: str | None = None
|
|
configuration: dict | None = None
|
|
created_at: str
|
|
updated_at: str
|
|
```
|
|
|
|
### Factory Method Pattern
|
|
|
|
Always implement `from_api_response()` for API transformation:
|
|
|
|
```python
|
|
@classmethod
|
|
def from_api_response(cls, data: dict[str, Any]) -> "MyModel":
|
|
"""Transform API response to model.
|
|
|
|
This method handles the JSON:API format used by Prowler API,
|
|
extracting attributes and relationships as needed.
|
|
"""
|
|
attributes = data.get("attributes", {})
|
|
return cls(
|
|
id=data["id"],
|
|
name=attributes["name"],
|
|
# ... map other fields
|
|
)
|
|
```
|
|
|
|
## API Client Usage
|
|
|
|
The `ProwlerAPIClient` is a singleton that handles authentication and HTTP requests:
|
|
|
|
```python
|
|
class MyTools(BaseTool):
|
|
async def my_tool(self) -> dict:
|
|
# GET request
|
|
response = await self.api_client.get("/api/v1/endpoint", params={"key": "value"})
|
|
|
|
# POST request
|
|
response = await self.api_client.post(
|
|
"/api/v1/endpoint",
|
|
json_data={"data": {"type": "items", "attributes": {...}}}
|
|
)
|
|
|
|
# PATCH request
|
|
response = await self.api_client.patch(
|
|
f"/api/v1/endpoint/{id}",
|
|
json_data={"data": {"attributes": {...}}}
|
|
)
|
|
|
|
# DELETE request
|
|
response = await self.api_client.delete(f"/api/v1/endpoint/{id}")
|
|
```
|
|
|
|
### Helper Methods
|
|
|
|
The API client provides useful helper methods:
|
|
|
|
```python
|
|
# Validate page size (1-1000)
|
|
self.api_client.validate_page_size(page_size)
|
|
|
|
# Normalize date range with max days limit
|
|
date_range = self.api_client.normalize_date_range(date_from, date_to, max_days=2)
|
|
|
|
# Build filter parameters (handles type conversion)
|
|
clean_params = self.api_client.build_filter_params({
|
|
"filter[status]": "active",
|
|
"filter[severity__in]": ["high", "critical"], # Converts to comma-separated
|
|
"filter[muted]": True, # Converts to "true"
|
|
})
|
|
|
|
# Poll async task until completion
|
|
result = await self.api_client.poll_task_until_complete(
|
|
task_id=task_id,
|
|
timeout=60,
|
|
poll_interval=1.0
|
|
)
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
### Tool Docstrings
|
|
|
|
Tool docstrings become description that is going to be read by the LLM. Provide clear usage instructions and common workflows:
|
|
|
|
```python
|
|
async def search_items(self, status: str = Field(...)) -> dict:
|
|
"""Search items with advanced filtering.
|
|
|
|
Returns a lightweight list optimized for LLM consumption.
|
|
Use get_item for complete details about a specific item.
|
|
|
|
Common workflows:
|
|
- Find critical items: status="critical"
|
|
- Find recent items: Use date_from parameter
|
|
"""
|
|
```
|
|
|
|
### Error Handling
|
|
|
|
Return structured error responses instead of raising exceptions:
|
|
|
|
```python
|
|
async def get_item(self, item_id: str) -> dict:
|
|
try:
|
|
response = await self.api_client.get(f"/api/v1/items/{item_id}")
|
|
return DetailedItem.from_api_response(response["data"]).model_dump()
|
|
except Exception as e:
|
|
self.logger.error(f"Failed to get item {item_id}: {e}")
|
|
return {"error": str(e), "status": "failed"}
|
|
```
|
|
|
|
### Parameter Descriptions
|
|
|
|
Use Pydantic `Field()` with clear descriptions. This also helps LLMs understand
|
|
the purpose of each parameter, so be as descriptive as possible:
|
|
|
|
```python
|
|
async def list_items(
|
|
self,
|
|
severity: list[str] = Field(
|
|
default=[],
|
|
description="Filter by severity levels (critical, high, medium, low)"
|
|
),
|
|
status: str | None = Field(
|
|
default=None,
|
|
description="Filter by status (PASS, FAIL, MANUAL)"
|
|
),
|
|
page_size: int = Field(
|
|
default=50,
|
|
description="Results per page"
|
|
),
|
|
) -> dict:
|
|
```
|
|
|
|
## Development Commands
|
|
|
|
```bash
|
|
# Navigate to MCP server directory
|
|
cd mcp_server
|
|
|
|
# Run in STDIO mode (default)
|
|
uv run prowler-mcp
|
|
|
|
# Run in HTTP mode
|
|
uv run prowler-mcp --transport http --host 0.0.0.0 --port 8000
|
|
|
|
# Run with environment variables
|
|
PROWLER_APP_API_KEY="pk_xxx" uv run prowler-mcp
|
|
```
|
|
|
|
For complete installation and deployment options, see:
|
|
- [Installation Guide](/getting-started/installation/prowler-mcp#from-source-development) - Development setup instructions
|
|
- [Configuration Guide](/getting-started/basic-usage/prowler-mcp) - MCP client configuration
|
|
|
|
For development I recommend to use the [Model Context Protocol Inspector](https://github.com/modelcontextprotocol/inspector) as MCP client to test and debug your tools.
|
|
|
|
## Related Documentation
|
|
|
|
<CardGroup cols={2}>
|
|
<Card title="MCP Server Overview" icon="circle-info" href="/getting-started/products/prowler-mcp">
|
|
Key capabilities, use cases, and deployment options
|
|
</Card>
|
|
<Card title="Tools Reference" icon="wrench" href="/getting-started/basic-usage/prowler-mcp-tools">
|
|
Complete reference of all available tools
|
|
</Card>
|
|
<Card title="Prowler Hub" icon="database" href="/getting-started/products/prowler-hub">
|
|
Security checks and compliance frameworks catalog
|
|
</Card>
|
|
<Card title="Lighthouse AI" icon="robot" href="/getting-started/products/prowler-lighthouse-ai">
|
|
AI-powered security analyst
|
|
</Card>
|
|
</CardGroup>
|
|
|
|
## Additional Resources
|
|
|
|
- [MCP Protocol Specification](https://modelcontextprotocol.io) - Model Context Protocol details
|
|
- [Prowler API Documentation](https://api.prowler.com/api/v1/docs) - API reference
|
|
- [Prowler Hub API](https://hub.prowler.com/api/docs) - Hub API reference
|
|
- [GitHub Repository](https://github.com/prowler-cloud/prowler) - Source code
|